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ABSTRACT

A set of dimensionless scaling parameters for use in correlating performance data for
Pulse Tube Refrigerators is presented.  The dimensionless groups result after scaling the
mass and energy conservation equations, and the equation of motion for an axisymmetric,
two-dimensional ideal gas system.  Allowed are viscous effects and conduction heat transfer
between the gas and the tube wall.  The scaling procedure results in reducing the original 23
dimensional variables to a set of 11 dimensionless scaling groups.  Dimensional analysis is
used to verify that the 11 dimensionless groups obtained is the minimum number needed to
describe the system.  We also examine 6 limiting cases which progressively reduce the
number of dimensionless groups from 11 to 3.  The physical interpretation of the
parameters are described, and their usefulness is outlined for understanding how heat
transfer and mass streaming affect ideal enthalpy flow.

INTRODUCTION

Experimentalists must often decide upon the most efficient way to correlate a large
amount of laboratory data that will give a clear understanding of the results.  This
eventually leads to scaling the differential fluid equations, and then determining the number
of mutually independent dimensionless groups using dimensional analysis..  

As an example of the usefulness of dimensional analysis, consider heat transfer from a
hot wire submerged in a moving fluid.  The heat transferred per unit length of wire, Q/l, is a
function of the temperature difference, q, wire diameter, d, fluid velocity, u; and the fluid
density, r, heat capacity, Cp, viscosity m,  and thermal conductivity, k.  The number of data

points required to measure these 8 variables a minimum of 3 times per variable is 38.  
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However, by using dimensional analysis, the above 8 variables can be reduced to 3
independent dimensionless groups
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which are the Nusselt, Reynolds and Prandtl Numbers where Q = hAq , with h as the heat
transfer coefficient and A µ d ⋅ l  as the heat transfer area.  Thus only 33 independent
measurements are required.  

Limited progress has been made on modeling the Pulse Tube (PT) through solution of
the fluid equations.  Most models are based upon ideal one-dimensional (1D) flows1.  To
account for diffusion heat transfer and viscous effects, lumped-parameter corrections to the
1D models have been employed2.  Direct solution of the two-dimensional (2D) fluid
equations to account for heat transfer and viscosity have been made earlier in acoustics for
boundary layer flows3.  A recent 2D analysis has examined thermal and viscous diffusion
and second order steady mass streaming for the case of negligible axial temperature
gradient4.  

These models are not completely satisfactory.  One-dimensional models cannot
account for steady mass streaming, and solving for the temperature profile in 2D models is
difficult.  The limited progress is due to the complexity of the coupled differential equations
for mass, momentum and energy conservation.  Fortunately, some relief is available from
dimensional analysis.  Dimensional analysis gives the experimentalist the ability to correlate
data without resorting to a complete solution of the differential equations.  A recent
dimensional analysis for thermoacoustics illustrates the usefulness of this approach5.

The purpose of this paper is to present a formal dimensional analysis that suggests a
set of useful dimensionless groups for correlating PT data.  The dimensionless groups are
shown to be consistent with the dimensionless groups obtained by scaling the 2D
axisymmetric fluid equations.  The analysis, being 2D, contains transverse heat transfer and
viscous effects, which are the transport processes associated with departures from ideal 1D
models.  The set of dimensionless groups are then reduced for 6 special limiting cases of
pulse tube operation.

SCALING

In this first section we scale the governing fluid equations that describe the flow
dynamics of the tube.  A sketch of the system is shown in Figure 1.  Two problem domains
are considered.  The gas domain extends from r* = 0  to r* = rw

*  and z* = 0  to z* = L*

(starred variables are dimensional quantities).  The tube wall domain extends from y* = 0  to
y* = l*  and z* = 0  to z* = L* , where l* is the tube wall thickness.  Adiabatic conditions exist
for the outer wall surface, and continuity of temperature and heat flux must exist between
the gas and the tube wall interface.  The velocity boundary conditions are of small
amplitude and periodic so that time is described using complex notation: at  z* = 0 ,
u = U0*eiw*t*, and at z* = L*

, u = UL*ei(w*t*+fU) where w* = 2pf * is the angular frequency,
f * is the frequency; t* is time; fU is the velocity phase angle between the tube ends; and U0*

and UL* are the velocity amplitudes at each end.  The energy boundary condition at the outer
tube wall is adiabatic, with the temperature at z* = 0  and z* = L*  taken as T * = Tc

*  and
T * = Th

* , respectively.  In this paper, we will refer to the z-direction as the axial direction,
and the r-direction as the transverse direction.  We will also use the following notation for
partial derivatives: c,h = ∂c ∂h .  
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Figure 1.  Axisymmetric system examined where r w
* L*

<< 1 .

The fluid equations6 are reduced for our system using the following simplifying
assumptions: axisymmetric cylindrical geometry; ideal gas; constant transport properties;

Stokes' assumption for the second viscosity; and rw
*2 L*2 << 1 (implying that ∂p* ∂r *ª 0

so that the r-momentum equation can be decoupled from the rest of the problem, and so
that axial viscous transport is negligible in the z-momentum equation).  The reduced fluid
equations for mass conservation, equation of motion, energy conservation, and equation of
state become, respectively,

r,t*
* +

r*u *r*( ),r *

r* + r *u*( ),z* = 0 ; (1)

r* u,t*
* + u *u,r*

* + u*u,z*
*[ ] = -p,z *

* +
m *

r* r*u,r*
*( )

,r * (2)

 EMBED "Equation" \* mergeformat
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,r* + k *T,z*z *
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p* = r* R* T * . (4)
The energy conservation equation for the tube wall domain for l*<< rw

*  is

rt
*Cpt

* T,t*
* = k t

* T,y*y*
* + T,z *z*

*( ) . (5)

The time-averaged enthalpy flow is of primary interest since it represents refrigeration,
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where the overbar represents time-averaged values over a cycle.  The kinematic velocity
components in the z* and r* direction are u* and u*; the thermodynamic gas variables p*, r*,
T * are pressure, density and temperature, respectively; the density of the tube wall material
is rt*; gas properties, m*, k*, Cp*, are the dynamic viscosity, thermal conductivity and heat
capacity, and the tube wall properties, kt* and Cpt

* , are the thermal conductivity and heat

capacity of the tube wall.
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The above dimensional equations are next scaled (normalized) to dimensionless form so
that the resulting dimensionless variables range from 0 to O(1) (order 1).  The variables are
scaled as follows: r* is scaled with rw

* , z* is scaled with L*, y* is scaled with the tube wall
thickness l*, and t* is scaled with the angular frequency w*;  u*  is scaled with the axial
boundary condition velocity U0

* ; u0
*  is scaled with (U0

* rw
* L* ); p*, r*, T*, are scaled with

mean pressure p0
* , reference density r0

* , and reference temperature T0
* .  The transport

properties m*, k*, Cp*, kt* and Cpt
* , and the tube wall density rt* are taken as constant.

These scaling parameters are substituted into the dimensional Eqs. (1) to (6) and rearranged
to give the corresponding dimensionless form (unstarred variables are dimensionless) for
mass conservation, equation of motion, energy conservation, equation of state, tube wall
energy conservation and time-average enthalpy flow, respectively:
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 EMBED "Equation" \* mergeformat  
H = prw

2w ruT
1 w
Ú dt

(12)

The enthalpy flow of the gas, Eq. (12), is normalized by the sum of the axial heat
conduction of the gas, the axial heat conduction of the tube wall, and the enthalpy flow of the
gas at some reference point, all averaged over the transverse area (which includes the gas
and the tube wall).  Since this quantity is constant in the axial direction when averaged over
the transverse area (recall the adiabatic boundary conditions at the outer tube wall, Fig. 1),
we take the reference enthalpy flow, H ref

* , to be at the cold end (this will be convenient for

illustrating a later point in the section on dimensional analysis).  The above set of equations
identifies 9 dimensionless scaling groups.  Two additional dimensionless groups, fU and UL,
enter through the boundary conditions.  These groups are listed  in Table 1 along with their
physical meanings.  The relative magnitudes of the groups provide an understanding of the
importance of the various dynamic effects (friction, heat transfer, compressibility, etc.).
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DIMENSIONAL ANALYSIS

The Buckingham-Pi Theorem7 states that the minimum number of dimensionless
groups, P, is determined from the expression

P = m – n

where m is the minimum number of independent variables (such as velocity, pressure,
thermal diffusivity, etc.) and n is the number of primary dimensions.  For the pulse tube,
we take time, length, mass and temperature to be our primary dimensions.  

A helpful procedure used for obtaining the minimum number of independent variables
(and therefore the minimum number of dimensionless groups) has been outlined by Krantz8

and is summarized as follows:

1. List all equations necessary to solve for the quantity of interest.
2. List the boundary conditions.
3. Simplify the equations listed in steps 1 and 2 through use of any additional information.  For

example, neglecting higher order terms to reduce the number of variables, or using explicit
solutions that can relate one variable in terms of others.

4. List all variables and group-of-variables that are mutually independent by examining the set of
relations listed in 3.  This typically requires finding natural groups within the equations and from
the boundary conditions.  The number of independent variables is "m"

5. List all fundamental dimensions (such as mass, length, time, temperature).  The number of
fundamental dimensions is "n".

6. The minimum number of independent dimensionless groups, P, is m – n.
7. Combine the independent variables to form the minimum number of independent dimensionless

groups.

Table 1.  Dimensionless Scaling Groups
Name Definition Physical Meaning

e expansion parameter U0
* w *L*( ) = d* L* ratio of displacement length, d*, to tube length

g heat capacity ratio  EMBED
"Equation" \*
mergeformat

  C p
* Cv

*

ratio of constant pressure to constant volume heat
capacities.

EMBE
D
"Equatio
n" \*
mergefo
rmat
V 2

Valensi Number r w
*2w * n* ratio of tube inner radius to viscous diffusion

length

P2 Prandtl Number n* a * ratio of viscous to thermal diffusion length scales

M Mach Number U0
* gRT0

* ratio of velocity at z = 0 to speed of sound

F2 inverse Fourier Number a t
* w *lt

*2Ê 
Ë 

ˆ 
¯ 

ratio of thermal diffusion length to tube wall
thickness

r w
* L* gas domain length ratio ratio of tube radius to tube length

l* L* tube wall length ratio ratio of tube wall thickness to tube length

H normalized enthalpy
flow

H * H ref
* ratio of enthalpy flux to reference enthalpy flux

H ref
* = rc

*Tc
*U0

* Cp
* p rw

*2

UL velocity ratio UL
* U0

* ratio of velocity amplitude at z = 1 to amplitude
at and z = 0

fU velocity phase angle velocity phase angle at z = 1 relative to z = 0
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In keeping with the methodology outlined above, the first step in dimensional analysis
is to identify the quantity of interest.  This is the time and (transverse) area averaged
enthalpy flow, H * , with Cp

*  taken as constant.  In general, it is a nonlinear quantity, the

time-averaged product between mass flux and temperature (Eq. 6) or velocity and pressure,

 EMBED "Equation" \* mergeformat

H * = 2pw* g
g -1

p*u*

1 w *
Ú dt*
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¯ 
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0

rw
*

Ú r*dr* . (13)

Determining H *  requires solving for p* and u* over the domain.  This generally requires
solving the full 3D set of fluid equations.  However, we can immediately reduce the
equations to 2D axisymmetric as given by Eqs. (1) to (5).   

The next step is to identify the boundary conditions.  The velocity can be of different
amplitude (U0

*  and UL
* ) and phase (fU) as indicated in Figure 1.  The temperature (energy)

boundary condition at the outside of the tube is adiabatic.  Temperature and heat flux must
be continuous across the gas/tube interface.

The equation set can be further simplified by linearizing if the parameter e is small (see
Eqs (7), (8) and (9)).  An asymptotic series solution in the small parameter e, with M << e,
can then be used to obtain an anelastic linear set of leading order equations with second
order corrections.  Details of this expansion are given elsewhere.9

The full complement of 23 dimensional variables relevant to the problem is listed in
Table 2.  These are not all mutually independent.  The Pi Theorem requires the minimum
number of variables, that is, the number of variables that are mutually independent.  The
independent variables are obtained by considering additional information.  In particular, the
number of variables listed in Table 2 can be reduced by finding "natural groups" within the
equations, by using information from the boundary conditions, and by using explicit
equations relating variables.  The following discussion makes use of this additional
information.

Thermal Diffusivity for the Tube Wall.  The energy equation for the tube wall is

simply the unsteady diffusion equation, with the thermal diffusivity, k t
* rt

*Cpt
*( )  being a

natural group that describes the relative importance between unsteady effects and diffusion.
The result of defining this natural group is to combine 3 variables and reduce them to a
single independent group.  Thus the number of variables is reduced by 2.

Table 2.  Full Complement of Dimensional Variables
Dimensional Variable Symbol Dimensional Variable Symbol
enthalpy flow H * leading order pressure, gas p0

*

tube inner radius r w
* leading order density, gas r0

*

tube length L* leading order temperature, gas T0
*

tube thickness l* oscillating pressure, gas p1
*

angular frequency w * oscillating density, gas r1
*

oscillating radial velocity u 0
* oscillating temperature, gas TI

*

oscillating axial velocity u0
* dynamic viscosity m*

axial velocity at z=0 U0
* thermal conductivity, gas k*

axial velocity ratio UL
* heat capacity, gas Cp

*

axial phase angle fU density, tube rt
*

mass ideal gas constant R thermal conductivity, tube kt*

heat capacity, tube Cpt
*
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Ideal Gas Relation.  From linearization, The zeroth and first order dependence of
pressure, density and temperature is described by the corresponding zeroth and first order
equation of state for an ideal gas.  This constitutes 6 unknowns (zeroth order: p0*, r0*, T0*,
and first order: p1*, r1*, T1*) in two equations (p0*= r0*T0*, p1*= r0*T1*+ r1*T0*), hence
there are 4 degrees of freedom and thus the number of variables is reduced by 2 (= 6 – 4 ).

Adiabatic Boundary Conditions.  The adiabatic boundary conditions at the outer
tube wall requires that the gas enthalpy flow plus conduction for the total (gas and tube
wall) system to be constant.  This relation reduces the number of variables by 1.

Analytic Solution for u0
* .  An analytic solution for u0

*  in z* is obtained directly from
the linear momentum equation9

 EMBED "Equation" \* mergeformat  
u0

* µ ¬ UL
* eifU - U0

*( )z* + U0
*[ ] F r *( )

where F(r*) is the functional radial dependence and ¬  represents the real part.  Thus u0
*

(which is the quantity of interest to us) contains the effects of three variables, U0
* , UL

* and
fU .  The number of variables is reduced by 3.

The total number of variables has been reduced from the original 23 to 15, hence
m = 15.  We now take time, length, mass and temperature to be our fundamental
dimensions, so that n = 4.  Finally we arrive at the minimum number of independent
dimensionless groups, which is 11.

The set of variables are now formed into 11 dimensionless groups.  With the help of
the previous scaling discussion, we choose the dimensionless groups listed in Table 1.
These groups are mutually independent, hence, these are the parameters to vary when
conducting experiments (all other things being equal, i.e., regenerator, heat exchanger and
compressor performance being constant).  The 11 groups, in conjunction with experimental
data, quantify how heat transfer and secondary mass streaming influence the enthalpy flow
and the temperature difference between the tube ends.

LIMITING CASES

This dimensional analysis has resulted in reducing the original 23 variables to 11
independent dimensionless groups.  The 11 dimensionless groups listed in Table 1 are
reiterated in Table 3 as Case 0.  It is the most complex case for correlating data based on our
reduced problem (Eqs. (1) to (6) and the boundary conditions of Fig. 1).  Mapping the
entire parameter space for these 11 groups is still a formidable task.  Fortunately, there are
several limiting cases for the PT that further reduce the number of dimensionless groups.
This is accomplished by expanding for small values of a particular dimensionless group,
which implies negligible effects for that group (at leading order).  We present 6 cases.

Case 1: Small Mach number limit and constant g .  The pulse tube operates at the
small Mach number limit (typically, M = O(10-3)).  This reduces the number of
dimensionless groups from 11 to 10 and effectively reduces the problem to an anelastic one
with negligible (energy) viscous dissipation.  In addition, for practical purposes, we can
simply take g  as large as possible, since a larger g  results in larger temperature oscillations
(for an isentropic process), hence larger enthalpy flows.  Helium, a monatomic molecule
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whose g  is 5/3, is usually used as the working fluid.  Constant g  further reduces the
number of groups from 10 to 9.  

Case 2: Isothermal wall.  The isothermal tube wall limit implies that the thermal
inertia of the wall is infinite, i.e., the temperature of the gas is pinned at the wall.  This
eliminates the effect of the wall domain, groups (l*2/L*2) and (F2), and so reduces the
number of groups from 9 to 7.

Case 3: Adiabatic wall.  The adiabatic limit for the tube wall implies that the tube
wall has no effect on the temperature oscillations of the gas (negligible heat capacity of the
wall).  The adiabatic boundary condition at the outer tube wall is directly seen by the gas,
and is characterized by the limit in which the dimensionless groups for the tube wall domain
go to zero, (l*2/L*2) Æ 0 and (l*2/L*2F2) Æ 0.  At this limit, there is no heat flux at the
gas/wall interface, which effectively eliminates the tube wall domain.  There is also no heat
flux at the centerline due to symmetry.  These temperature boundary conditions eliminate
transverse thermal diffusion thus requiring the temperature to be constant in the radial
direction (see Eq. (9)).  All this leads to a reduction of the number of dimensionless groups
from 9 to 6.  Axial heat conduction remains and is now characterized by the group

rw
*2 L*2P2V 2( ) .

Case 4: Adiabatic wall with no viscosity.  This is the same as Case 3 but with the
additional constraint of 1 V 2 Æ 0 .   This further reduces the number of groups from 6 to 5
and effectively eliminates all transverse diffusion effects, hence, the problem becomes one-
dimensional.

Case 5: Adiabatic wall with no viscosity and constant axial temperature gradient
of the gas.  This is the same as Case 4 with the additional assumption of a constant axial
temperature gradient (axial linear temperature profile).  A constant temperature gradient

eliminates the effect of axial heat conduction scaling group rw
*2 L*2P2V 2( )(see Eq. 9).  In

real systems, though, this may not be the case.

Case 6: Adiabatic wall with no viscosity, constant axial temperature gradient of
the gas, and ideal integrated flow through the orifice.  This is the same as Case 5 with
the additional requirement that the phase angle between the velocities at the two ends is 90°
(or equivalently, the phase angle between pressure in the tube and mass flow through the

Table 3.  Suggested Dimensionless Groups for Various Limiting Cases
Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
full 2D M<<1 and

g = constant
Case 1 plus
isothermal
wall

Case 1 plus
adiabatic wall

Case 3 plus no
viscous flow

Case 4 plus
T,z = constant

Case 5 plus
f = 90°

M
g

l*2 L*2 l*2 L*2

F2 F2
P2 P2 P2
V 2 V 2 V 2 V 2

rw
*2 L*2 rw

*2 L*2 rw
*2 L*2 rw

*2 L*2 P2V 2 rw
*2 L*2 P2V 2

fU fU fU fU fU fU fU = 90°
e e e e e e e
UL UL UL UL UL UL UL
H H H H H H H 
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orifice is 0°).  This is usually the case in ideal models, however, it is not necessarily the case
in which there is active control of the hot end mass flow, such as for moving plug systems
or systems in which the orifice is replaced with solenoid valves.

As an example of how these dimensionless groups may be used, consider the simplest
case of ideal enthalpy flow, Case 6 in Table 3.  Case 6 contains 3 independent
dimensionless parameters, e, UL, and H .  These parameters represent the following
measurable quantities: e represents the dynamic pressure oscillation relative to the mean
pressure, or equivalently, the pressure ratio (e can be written as d*/L* where d* is the
(imaginary) piston displacement at one end of the tube and L* is the tube length);
UL = UL

* U0
*  represents the mass flow ratio between the two ends; and H  is the

normalized enthalpy flow which is determined by the amount of heat rejected at Th for a
given Tc.  Measurements of the dimensional data (U0

*  may be a bit difficult), for the

prescribed conditions of {l*2/L*2}, { l*2/(L*2F2)} and {1 V 2 } being small, and the axial
temperature profile being reasonably linear (which may not necessarily be the case) will
allow a correlation between the three groups.  These groups are also indirectly suggested by
Storch and Radebaugh, et. al.10 (in their Eqs. (2-39) and (2-40)) who give a 3 parameter
functional relation that can be rewritten in terms of e, UL, and H .  

CONCLUSION

A set of 11 dimensionless scaling groups have been identified for use in correlating pulse
tube data.  The 11 groups allow for transverse heat transfer to the tube wall and viscous
effects.  For ideal one-dimensional enthalpy flow in which the phase angle between the
pressure in the tube and mass flow through the orifice is in phase, and the axial temperature
is reasonably linear, the number of dimensionless groups reduce to 3: pressure ratio,
velocity ratio between the two ends, and normalized heat rejected at the hot end.
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